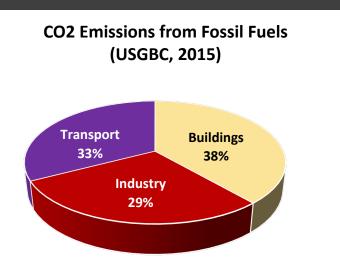
Zero Place and the Necessary Future of Buildings

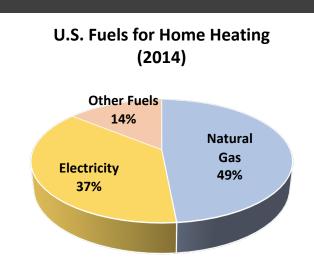
David Shepler 9/21/2019

Overview

- Bio
- Inspiration
- Need for a transformation in building technology
- Exemplar: Zero Place
- Policy prescriptions for decarbonizing buildings

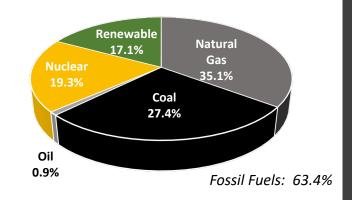
Bio

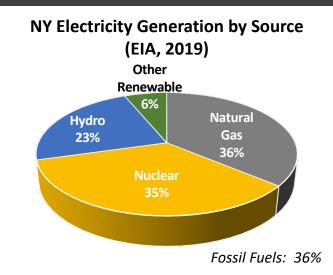

- Founder of Zero Place
- COO of Elemental Cognition, an AI R&D company
- Formerly the Program Director of the Smarter Energy Research Institute at IBM
- Owner of a net-zero energy home
- Passionate about energy efficiency and climate change solutions
- Background in technology
- Graduate of the U.S. Air Force Academy, the RAND Graduate School, and University of Maryland School of Public Affairs


Inspiration

What do buildings have to do with climate change? \bullet

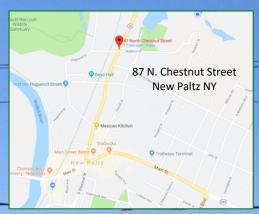
Buildings - highest CO2 emissions •




• Heating of homes in the U.S.

Electricity Generation

U.S. Electricity Generation by Source (EIA, 2018)



Moving to a zero emissions building

- Electrification of all systems (eliminates oil/gas)
- Making the building efficient
 - Envelope: walls, floor, roof, windows
 - HVAC
 - Solar: Offset electric demand
 - Operations: energy monitoring, tenant behavior
- Decarbonizing the production of electricity

Zer0 Place

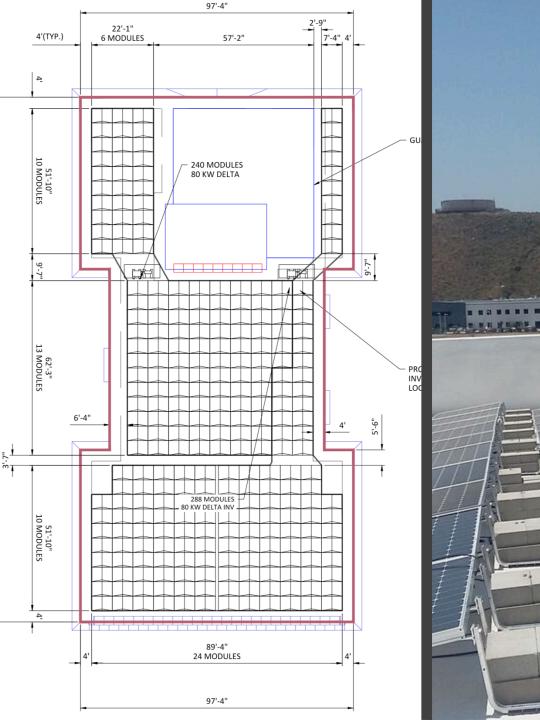
- Mixed use, net-zero energy building
- 100% privately financed with NYand federal incentives
- Owner developed and operated
- Includes affordable housing

Envelope

Features

- Insulated-concrete form (ICF) walls
- Triple-paned fenestration
- High-R slab and roof assemblies
- Air-tight construction strategy
- Thermal bridging reduction

Performance


- 37% better than code
- 65% tighter than NYS ECCC
- Saves 169,488 kWh/yr of energy

HVAC and DHW

Ground-source Heat Pump (GSHP) provides 100% heating, cooling, <u>and</u> hot water

- 15x, 400-ft wells, all within building footprint
- Integrating DHW with building heating/cooling saved 15% system cost and achieves higher efficiency through balancing
- Variable speed pump, and all ducting / distribution within building envelope
- Unitary ERV systems for each unit with controls for CO₂, oven use, and tenant control

Solar

- 246 kW of solar (683 panels @360W)
- Installed on roof and solar awnings on south wall
- Total annual generation: 296,141 kWh/yr, 1,398 kWh/yr excess
- 84 metric tons/yr carbon offset
- 11,978 SF covered
- SunPower Helix

Operations

- Incentivizing tenants
 - Zero Place bundles power and water with rent
 - Building should largely run on its own, but tenants must not waste energy
- Monitoring infrastructure installed
 - Electric sub-metering of HVAC and plug load
 - Water sub-metering for individual hot and cold
- Social incentives
 - Gamification
 - Posting a "leader board" and average consumption
- Lease agreement limits payments for exceeding a threshold
- Tenant selection select tenants to participate in the ethic of the building

Other Features

- 10 EV charging stations (with electric bike ports)
- 50 bicycle racks on the property
- Adjacent to Empire Trail
- Bus stop onsite
- ³/₄ mi from village center
- Bike lanes along street frontage
- Adherence to "complete streets" principles
- Seeking LEED Platinum and LEED pilot credit of Passive Survivability (maintains 50% F off grid)

Modeled Building Performance

- HERS Index Score
 - -13 with solar (net-zero energy)
 - 35 before solar
- Produces 1,398 kWh/yr extra
- Reduce annual carbon emissions by 132 metric tons of CO₂e
- More carbon saved through Complete Street principles

Cost Analysis

- Estimate a 20% 25% premium over NY ECC-code compliant building
- Estimate 8-10 year payback

Feature	Increase over reference	Benefits
ICF Walls	\$275 <i>,</i> 000	 Superior air barrier and insulation Extended life-cycle and reduced mnx
Solar PV	\$450,000	Direct payback of 8.3 years, 12% IRR
GSHP	\$500 <i>,</i> 000	 5-7 year payback due to doubling efficiency of ASHP Also ensures savings from peak demand charges
Eco-car Elevator	\$20,000	 50%-80% less energy than conventional, regenerative drive Savings on rooftop machining

- Zero Place lot historically used for auto-related businesses.
- Burned down in Feb 2015

Policy ideas for decarbonizing buildings

٠

- New buildings
 - Construct only low- and zero-carbon buildings
- Old buildings:
 - retrofit for energy efficiency (insulation, windows)
 - eliminate fossil fuel systems (HVAC primarily)

Electrification

- Electrify all aspects of buildings (HVAC, appliances)
- Decarbonize electric production (wind, solar, hydro, nuclear)

Finance

- Green loans for energy efficiency
- Accounting for energy efficiency in building values

Incentives

- Aligning incentives of builders, owners, and tenants
- Cost of carbon

Analytics and IT

- Install building monitoring systems
- Use analytics to optimize building efficiency

Government Buildings

• Aggressively begin by transforming all federal, state, and local buildings